Southern African Large Telescope

Title: HRS pipeline for LR blue-arm data with MIDAS

Author(s): Alexei Kniazev

Doc. number:	HRS0000005
Version:	1.0
Date:	August 17, 2016
Keywords:	HRS, Pipeline
Approved:	Petri Väisänen (Ast Ops Manager)

ABSTRACT

In this report I present a pipeline for the High Resolution Spectrograph (HRS) blue-arm data taken in Low Resolution (LR) mode. This pipeline was implemented using standard system of astronomical data reduction MIDAS. All programs were written in MCL (MIDAS Command Language) and were developed and debugged by me within a total time of **about four hours**. MCL programs are based on the standard MIDAS echelle packages FEROS and ECHELLE. I present here results of my work.

South African Astronomical Observatory, Cape Town 7925, South Africa

Contents

1	Introduct	tion		4
2	HRS LR	blue-arm data reduction implementation		4
	2.1 Order	r Definition	 	4
	2.2 Back	ground Definition	 	5
	2.3 Order	r Extraction	 	5
	2.4 Flat	Field Correction	 	5
	2.5 Wave	length Calibration	 	5
	2.6 Order	r Merging	 	6
		Final Sky Subtraction		
3	MIDAS I	pipeline for HRS LR blue-arm data		15
4	Conclusio	ons		15

List of Figures

1	An example of order definition with DEFINE/FEROS procedure for HRS LR blue-arm flat-field image. The whole image is shown.	4
2	Rectified ThAr+Ar ARC spectrum from Sky fiber. There is bunch of bad columns is located at the top-left part of the image. Each blue-arm 2D spec-	-
3	trum has this feature	5
	mode) is shown.	7
4	Wavelength solution in 1D mode shown, when after the global 2D solution, the coefficients are computed independently for each order. Solution for the	-
	fiber with object (fiber number two in LR mode) is shown	8
5	Wavelength solution in 2D mode, when the coefficients are derived from a global 2D solution. Solution for the fiber with sky (fiber number one in LR	
	mode) is shown.	9
6	Wavelength solution in 1D mode shown, when after the global 2D solution, the coefficients are computed independently for each order. Solution for the	
	fiber with sky (fiber number one in LR mode) is shown.	10
7	The distribution in wavelength of residuals for each finally used lines from ARC. Blue lines show the standard deviation level. The top panel shows this	
	distribution for the first fiber and the bottom panel shows is for the second	
	fiber. Both pictures are for the 2D solution only.	11
8	Two examples of edges for adjacent orders from wavelength calibrated ARC spectrum. Different orders are shown with different color. Blue (top) and red	
	(bottom) spectral regions are shown.	12

9	Top: Merged spectrum of new LBV candidate star without flat-field correction.	
	<i>Bottom:</i> The same spectrum, but after flat-field correction. For orders bluer of	
	~ 4300 Å correction for the FLAT gives very bad result and these orders are	
	not included in the plot	13
10	Top: Merged spectrum of the central star SAO 244567 of young planetary	
	nebulae from my observational program without flat-field correction. <i>Bottom:</i>	
	The same spectrum, but after flat-field correction.	14
11	Top: The merged spectra of new LBV candidate star without flat-field cor-	
	rection for both blue and red channels data. <i>Bottom:</i> The merged spectra	
	of the central star SAO 244567 of young planetary nebulae without flat-field	
	correction for both blue and red channels data.	16

SEND MORE CATS! LT. JERRY MOUSE

1 Introduction

After making MIDAS working to reduce HRS red-arm data in all modes I make an experiment will it be possible for me to reduce HRS blue-arm data taken in LR mode. I modified all procedures for work with LR blue-arm mode. It took a total time of about four hours. In the current report I will display shortly results of this work.

2 HRS LR blue-arm data reduction implementation

2.1 Order Definition

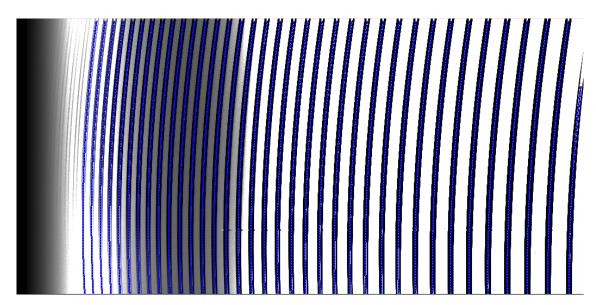


Figure 1: An example of order definition with <code>DEFINE/FEROS</code> procedure for HRS LR blue-arm flat-field image. The whole image is shown.

It is absolutely similar to LR red-arm mode. Template was created using FLAT image for HRS LR blue-arm data. With this template FEROS package program DEFINE/FEROS found 36 echelle orders in FLAT data up to the echelle order with absolute number 119. There are more blue orders is possible to define potentially, but only using not very red QTH lamps, but very blue star like white dwarf. The result of work of DEFINE/FEROS procedure is shown in Figure 1.

2.2 Background Definition

It is absolutely similar to all modes with red-arm data.

2.3 Order Extraction

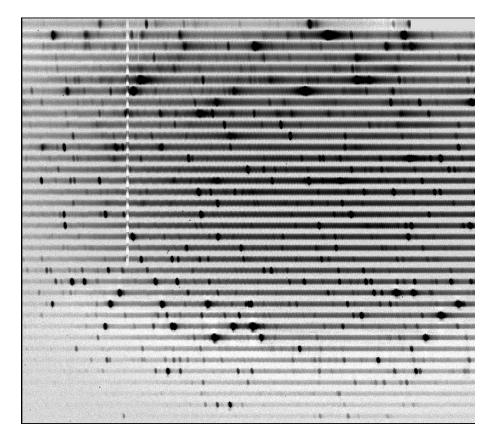


Figure 2: Rectified ThAr+Ar ARC spectrum from Sky fiber. There is bunch of bad columns is located at the top-left part of the image. Each blue-arm 2D spectrum has this feature.

It is absolutely similar to all modes with red-arm data. An example of the work of this procedure is shown in Figure 2. All defined 36 orders are visible.

2.4 Flat Field Correction

I did the flat-field correction for all objects from HRS data after their orders were extracted. This step is absolutely similar to LR red-arm mode.

2.5 Wavelength Calibration

SEARCH/ECHELLE command finds ~ 650 lines in all 36 orders for each extracted fiber in case of HRS LR blue-arm data.

I use the TWO-D method with initial interactive identification for the same 14 different not bright lines, which are located more or less uniformly across 2D ARC frame as I did for LR red-arm mode. Final solution was saved after that with SAVE/ECHELLE procedure for each fiber and used for all next wavelength calibrations in GUESS mode, where new found line positions in extracted ARC spectra are cross-correlated with previous solution, identified and new solution is found automatically.

An examples for such solution for both object and sky fibers are shown in Figures 3,4,5 and 6. This is the standard output from IDENTIFY/ECHELLE procedure. It shows the absolute number of spectral order, amount of finally used lines to build wavelength solution, calculated starting and final wavelengths as well as the standard deviation. I present here two types of solutions – the global 2D solution only and mode, when after the global 2D solution, the coefficients are computed independently for each order. In the second mode, when the amount of finally identified lines is less than required the global bivariate polynomial solution is used for these orders.

Figure 7 shows the distribution in wavelength of residuals for each finally used lines from ARC. Blue lines show the standard deviation level.

Figure 8 shows quality of the wavelength calibration in the way that edges of two adjacent orders are shown in the blue and red parts of spectra.

2.6 Order Merging

It is absolutely similar to all modes with red-arm data.

Figures 9 and 10 show examples of the final reduction for one candidate to LBV star and the central star SAO 244567 of young planetary nebulae from my observational programs after all 36 orders were merged in one spectrum. For orders bluer of \sim 4300 Å correction for the FLAT gives very bad result, where for the redder orders it looks very nice. *Different reasons could be for that and this question needs to be studied carefully.*

2.7 The Final Sky Subtraction

The sky subtraction was done in the same manner as it was explained in the previous report. Fortunately, there is no any sky input in data for sky fiber. For that reason sky subtraction is useless and only data for the object fiber have to be used in most data.

	IAL DEGREE			LI END	OTD DEV			
SEQ.NO	SPECTRAL ORDER	NU.LINES	WL START	WL END	STD. DEV. ANGSTROEM			
1	119	2	3889.62	 3941.10	0.00368	*FROM	2D	SOLUTION*
2	118	0	3922.63	3974.43	99.99999	*FROM	2D	SOLUTION*
3	117	2	3956.21	4008.33	0.00986	*FROM	2D	SOLUTION*
4	116	4	3990.36	4042.82	0.00566	*FROM	2D	SOLUTION*
5	115	2	4025.11	4077.91	0.00208	*FROM	2D	SOLUTION*
6	114	2	4060.46	4113.62	0.00271	*FROM	2D	SOLUTION*
7	113	4	4096.44	4149.96	0.00533	*FROM	2D	SOLUTION*
8	112	3	4133.07	4186.96	0.00621	*FROM	2D	SOLUTION*
9	111	6	4170.35	4224.62	0.00896	*FROM	2D	SOLUTION*
10	110	11	4208.30	4262.97	0.00655	*FROM	2D	SOLUTION*
11	109	8	4246.95	4302.03	0.00914	*FROM	2D	SOLUTION*
12	108	10	4286.32	4341.81	0.00724	*FROM	2D	SOLUTION*
13	107	15	4326.42	4382.34	0.00591	*FROM	2D	SOLUTION*
14	106	11	4367.27	4423.63	0.00449	*FROM	2D	SOLUTION*
15	105	11	4408.90	4465.72	0.00624	*FROM	2D	SOLUTION*
16	104	11	4451.33	4508.61	0.00901	*FROM	2D	SOLUTION*
17	103	12	4494.57	4552.34	0.00942	*FROM	2D	SOLUTION*
18	102	8	4538.66	4596.93	0.00600	*FROM	2D	SOLUTION*
19	101	8	4583.62	4642.41	0.00774	*FROM	2D	SOLUTION*
20	100	5	4629.48	4688.79	0.00471	*FROM	2D	SOLUTION*
21	99	8	4676.26	4736.11	0.00558	*FROM	2D	SOLUTION*
22	98	8	4723.99	4784.40	0.00509	*FROM	2D	SOLUTION*
23	97	7	4772.70	4833.69	0.00519	*FROM	2D	SOLUTION*
24	96	9	4822.42	4884.01	0.00697	*FROM	2D	SOLUTION*
25	95	5	4873.18	4935.38	0.00820	*FROM	2D	SOLUTION*
26	94	7	4925.01	4987.85	0.00811	*FROM	2D	SOLUTION*
27	93	4	4977.95	5041.45	0.00798	*FROM	2D	SOLUTION*
28	92	3	5032.04	5096.22	0.00360	*FROM	2D	SOLUTION*
29	91	4	5087.32	5152.19	0.00974	*FROM	2D	SOLUTION*
30	90	5	5143.81	5209.40	0.01240	*FROM	2D	SOLUTION*
31	89	3	5201.57	5267.90				SOLUTION*
32	88	2	5260.63	5327.73				SOLUTION*
33	87	2	5321.04	5388.94	0.00934	*FROM	2D	SOLUTION*
34	86	5	5382.85	5451.57	0.00911	*FROM	2D	SOLUTION*
35	85				0.00959			
36	84	0	5510.86	5581.30	99.99999	*FROM	2D	SOLUTION*
 М	EAN RMS:	0.00701						

** TOTAL NUMBER OF LINES : 208 ** Set parameter SAMPLE=0.0424258187

Figure 3: Wavelength solution in 2D mode, when the coefficients are derived from a global 2D solution. Solution for the fiber with object (fiber number two in LR mode) is shown.

POLYNOM	IAL DEGREE	: 3						
SEQ.NO	SPECTRAL	NO.LINES	WL START	WL END	STD. DEV.			
	ORDER				ANGSTROEM			
						имот	ENOUGU	LINEQ
1	119	3	3889.62	3941.10				
2	118	3	3922.63	3974.43				
3	117	3	3956.21	4008.33		*NO1	ENUUGH	LINE2*
4	116	6	3990.03	4042.86				
5	115	9	4025.14	4077.89				
6 7	114	11	4060.50	4113.59				
8	113 112	7 7	4096.39 4133.38	4150.25 4186.88				
8 9	112	8						
9 10			4170.35	4224.61	0.00557			
10	110 109	13 12	4208.32 4246.92	4262.97 4302.02				
11 12	109	12 10	4240.92 4286.31					
12	108	10 20	4286.31	4341.79 4382.36	0.00542			
13	107	20 15	4320.38	4382.30				
14	100	13	4408.84	4425.07				
15	103	12	4408.84 4452.35	4405.74				
17	103	12	4494.49	4552.37				
18	102	11	4538.64	4596.95				
19	101	10	4583.59	4642.41				
20	100	9	4629.43	4688.82				
21	99	11	4676.24	4736.11	0.00776			
22	98	12	4723.95	4784.24				
23	97	13	4772.67	4833.66	0.00742			
24	96	17	4822.37	4884.00	0.00600			
25	95	10	4873.13	4935.40				
26	94	8	4924.99	4987.85				
27	93	7	4977.90	5041.52				
28	92	6	5031.99	5096.41	0.00385			
29	91	8	5087.36	5152.17	0.00989			
30	90	10	5143.82	5209.58	0.00264			
31	89	9	5201.62	5267.92				
32	88	6	5260.71	5327.53				
33	87	5	5321.12	5388.98	0.01528			
34	86	8	5382.95	5451.36				
35	85	6	5446.17			. 1100	ENOUGU	
36	84	0	5510.86	5581.30	99.99999	*NUI	ENUUGH	LINES*
М	EAN RMS:	0.00689						
	NUMBER OF		328 **					
	meter SAMP							

Figure 4: Wavelength solution in 1D mode shown, when after the global 2D solution, the coefficients are computed independently for each order. Solution for the fiber with object (SAMETINHERSO(1000)05LR Works) on shown. Page 8 from 15 AUGUST 17, 2016

	IAL DEGREE							
SEQ.NO	SPECTRAL ORDER	NO.LINES	WL START	WL END	STD. DEV. ANGSTROEM			
1	119	2	3889.69	3940.91	0.00174	*FROM	2D	SOLUTION*
2	118	0	3922.67	3974.26	99.99999	*FROM	2D	SOLUTION*
3	117	0	3956.22	4008.17	99.99999	*FROM	2D	SOLUTION*
4	116	5	3990.35	4042.67	0.00370	*FROM	2D	SOLUTION*
5	115	3	4025.07	4077.77	0.00538	*FROM	2D	SOLUTION*
6	114	6	4060.41	4113.49	0.00532	*FROM	2D	SOLUTION*
7	113	3	4096.38	4149.84	0.00590	*FROM	2D	SOLUTION*
8	112	4	4132.98	4186.84	0.00695	*FROM	2D	SOLUTION*
9	111	6	4170.25	4224.50	0.00786	*FROM	2D	SOLUTION*
10	110	11	4208.20	4262.86	0.00543	*FROM	2D	SOLUTION*
11	109	10	4246.84	4301.92	0.01006	*FROM	2D	SOLUTION*
12	108	11	4286.20	4341.70	0.00570	*FROM	2D	SOLUTION*
13	107	15	4326.29	4382.23	0.00421	*FROM	2D	SOLUTION*
14	106	12	4367.14	4423.52	0.00730	*FROM	2D	SOLUTION*
15	105	10	4408.76	4465.61	0.00607	*FROM	2D	SOLUTION*
16	104	9	4451.19	4508.50	0.01103	*FROM	2D	SOLUTION*
17	103	7	4494.43	4552.23	0.00567	*FROM	2D	SOLUTION*
18	102	7	4538.53	4596.81	0.00534	*FROM	2D	SOLUTION*
19	101	7	4583.49	4642.28	0.00704	*FROM	2D	SOLUTION*
20	100	8	4629.34	4688.67	0.00791	*FROM	2D	SOLUTION*
21	99	7	4676.13	4735.99	0.00673	*FROM	2D	SOLUTION*
22	98	7	4723.86	4784.27	0.00619	*FROM	2D	SOLUTION*
23	97	7	4772.57	4833.56	0.00505	*FROM	2D	SOLUTION*
24	96	11	4822.29	4883.87	0.00621	*FROM	2D	SOLUTION*
25	95	8	4873.05	4935.25	0.01072	*FROM	2D	SOLUTION*
26	94	8	4924.89	4987.72	0.00872	*FROM	2D	SOLUTION*
27	93	4	4977.83	5041.32	0.00669	*FROM	2D	SOLUTION*
28	92	3	5031.92	5096.08	0.00628	*FROM	2D	SOLUTION*
29	91	6	5087.20	5152.06	0.01099	*FROM	2D	SOLUTION*
30	90	5	5143.69	5209.28		*FROM	2D	SOLUTION*
31	89	3	5201.44	5267.78	0.00895	*FROM	2D	SOLUTION*
32	88	5	5260.50	5327.62	0.01035	*FROM	2D	SOLUTION*
33	87	2	5320.90	5388.84				SOLUTION*
34	86	3	5382.70	5451.48	0.00851	*FROM	2D	SOLUTION*
35	85	2			0.00403			
36	84	0	5510.68	5581.25	99.99999	*FROM	2D	SOLUTION*
M	EAN RMS:	0.00666						

** TOTAL NUMBER OF LINES : 217 **

Set parameter SAMPLE=0.0429698974

Figure 5: Wavelength solution in 2D mode, when the coefficients are derived from a global 2D solution. Solution for the fiber with sky (fiber number one in LR mode) is shown.

SEQ.NO	SPECTRAL ORDER	NO.LINES	WL START	WL END	STD. DEV. ANGSTROEM			
1	119	3	3889.69	3940.91	0.05336	*N0T	ENOUGH	LINES,
2	118	3	3922.67	3974.26				
3	117	1	3956.22	4008.17				
4	116	7	3990.94	4042.58	0.00801			
5	115	8	4025.19	4077.70	0.00424			
6	114	12	4060.36	4113.49	0.00682			
7	113	7	4096.33	4150.09	0.00220			
8	112	7	4133.28	4186.77	0.00321			
9	111	8	4170.24	4224.50	0.00541			
10	110	12	4208.19	4262.87	0.00482			
11	109	13	4246.81	4301.90	0.00847			
12	108	11	4286.19	4341.69	0.00471			
13	107	19	4326.27	4382.24	0.00337			
14	106	14	4367.11	4423.54	0.00561			
15	105	11	4408.75	4465.61	0.00541			
16	104	9	4452.25	4508.43	0.00328			
17	103	10	4494.38	4552.26	0.00556			
18	102	9	4538.52	4596.82	0.00667			
19	101	9	4583.46	4642.30	0.00576			
20	100	9	4629.32	4688.68	0.00621			
21	99	10	4676.15	4735.98	0.00254			
22	98	12	4723.82	4784.10	0.00762			
23	97	12	4772.54	4833.52	0.00594			
24	96	18	4822.25	4883.87	0.00714			
25	95	11	4873.01	4935.27	0.00744			
26	94	10	4924.86	4987.71	0.00752			
27	93	7	4977.80	5041.31	0.00407			
28	92	7	5031.79	5096.28	0.00538			
29	91	9	5087.23	5152.08	0.00730			
30	90	9	5143.69	5209.48	0.00625			
31	89	7	5201.71	5267.77	0.00147			
32	88	9	5260.60	5327.32	0.00852			
33	87	5	5320.99	5388.82	0.00639			
34	86	7	5382.76	5451.43	0.00402			
35	85	5	5446.04		0.00440			
36	84	0	5510.68	5581.25	99.99999	*NOT	ENOUGH	LINES
	IEAN RMS: NUMBER OF	0.00628 LINES :	320 **					

Figure 6: Wavelength solution in 1D mode shown, when after the global 2D solution, the coefficients are computed independently for each order. Solution for the fiber with sky (fiber

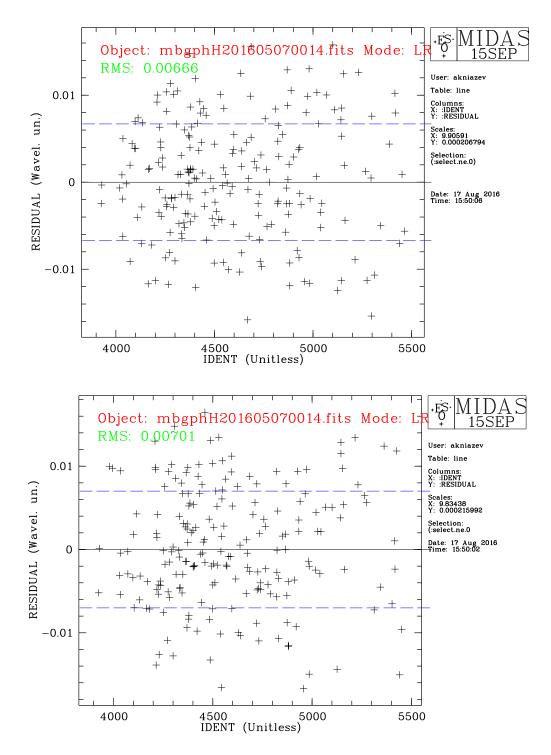


Figure 7: The distribution in wavelength of residuals for each finally used lines from ARC. Blue lines show the standard deviation level. The top panel shows this distribution for the first fiber and the bottom panel shows is for the second fiber. Both pictures are for the 2D solution only.

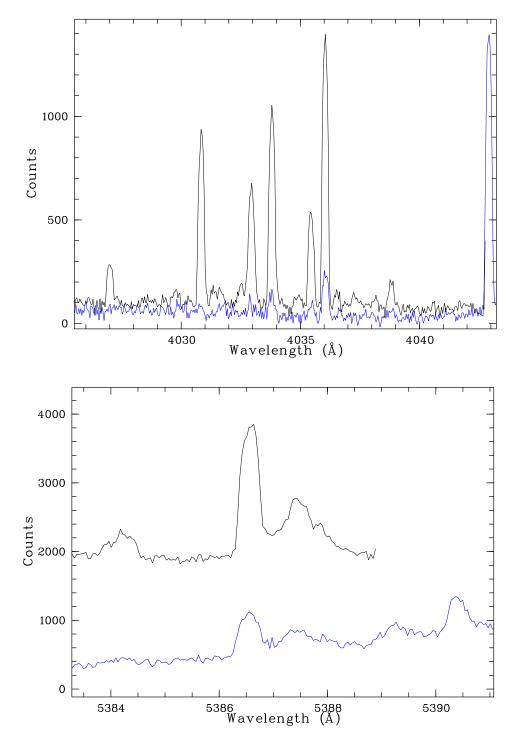


Figure 8: Two examples of edges for adjacent orders from wavelength calibrated ARC spectrum. Different orders are shown with different color. Blue (top) and red (bottom) spectral regions are shown.

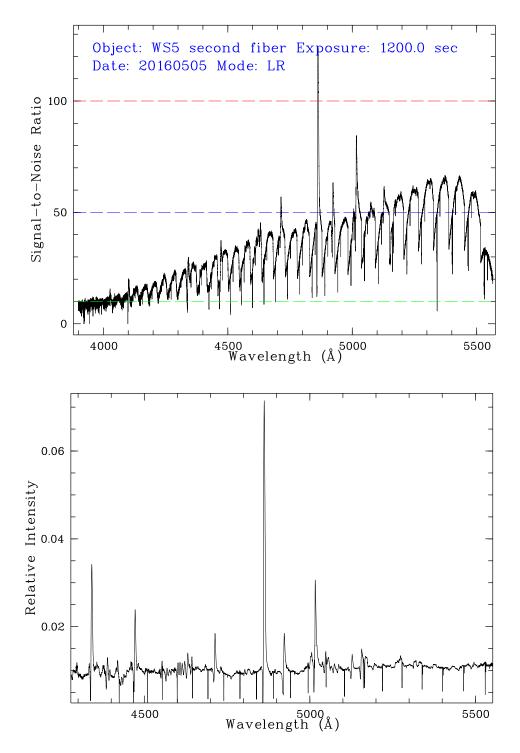
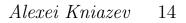



Figure 9: *Top:* Merged spectrum of new LBV candidate star without flat-field correction. *Bottom:* The same spectrum, but after flat-field correction. For orders bluer of \sim 4300 Å correction for the FLAT gives very bad result and these orders are not included in the plot.

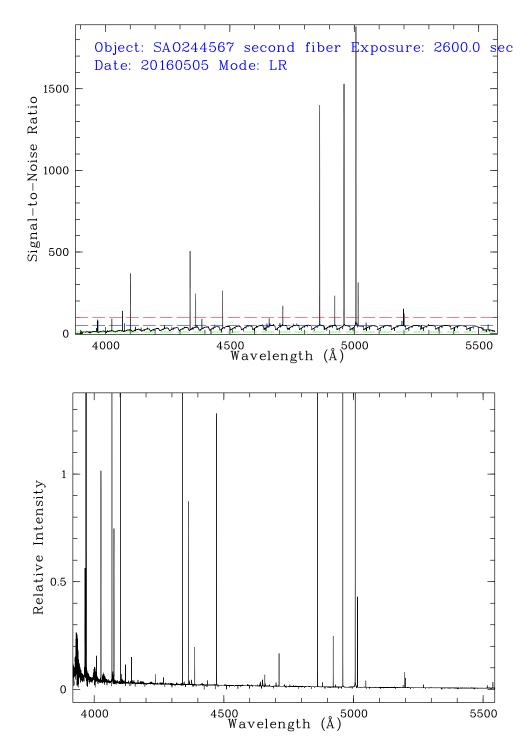


Figure 10: *Top:* Merged spectrum of the central star SAO 244567 of young planetary nebulae from my observational program without flat-field correction. *Bottom:* The same spectrum, but after flat-field correction.

3 MIDAS pipeline for HRS LR blue-arm data

All programs are written in MCL. The total length of the code is 520 MCL strings excluding comments. All steps are summarised into three main procedures:

1. FLAT reduction

During this step FLAT image is reduced. The output of this procedure consist of extracted and smoothed flats for both fibers and file with their ratio.

2. ARC reduction

During this step ARC image is reduced. The output consist of all tables, which are necessary for wavelength calibration of both fibers and extracted, calibrated and merged ThAr+Ar spectra for both fibers.

3. **Object reduction** The output consist of extracted, calibrated and merged spectra for both fibers and result of subtraction of the sky fiber from the object fiber as well as extracted, calibrated but not merged spectra for both fibers.

The output of all procedures is mostly FITS-files except configuration files, which are saved by system in the internal MIDAS format.

Each procedure has as minimum two modes of work: (1) **visualization mode**, when practically after each step user has a possibility to see and check the result of step, and (2) **silent mode**, when procedures work without any graphical output. Only the ARC reduction procedure has one more interactive mode for the possibility of re-identification of the reference spectrum.

Since the low level programs are implemented with $\tt C$ and $\tt FORTRAN$ code, reduction works very fast.

4 Conclusions

HRS pipeline for **ALL** HRS LR data is created in MIDAS and works.

Figures 9 and 10 show examples of the final reduction for one candidate to LBV star and the central star SAO 244567 of young planetary nebulae. Data for both blue and red channels are shown.

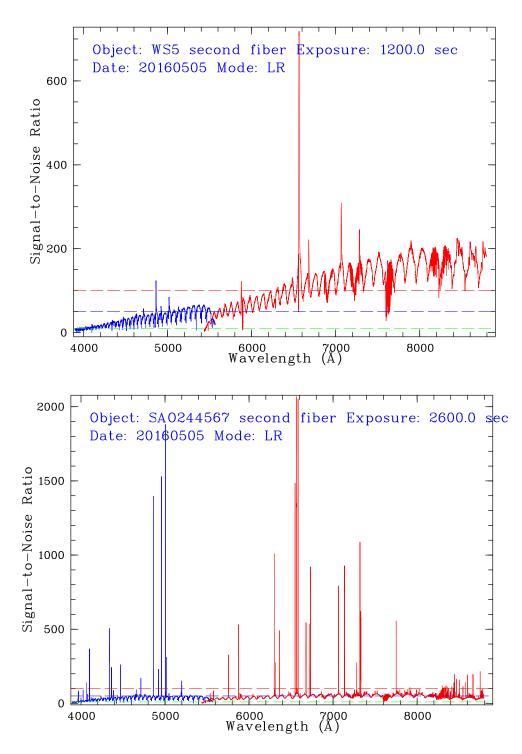


Figure 11: *Top:* The merged spectra of new LBV candidate star without flat-field correction for both blue and red channels data. *Bottom:* The merged spectra of the central star SAO 244567 of young planetary nebulae without flat-field correction for both blue and red channels data.