
Snappy

Snappy Programmer’s Reference

Release Version 3.0

2

Copyright © 1996-1999 by Play Incorporated.

Snappy is a registered trademark of Play Incorporated.

Visual Basic, Visual C++, ActiveX, OLE, and Windows are either registered
trademarks or trademarks of Microsoft Corporation.

All other trademarks are the property of their respective owners.

3

Table of Contents

INTRODUCTION ... 7
ROADMAP ... 7
GRAPHIC ORIENTATION TO THE SNAPPY API 8
SNAPPY DATA PROCESSING STEPS 9
SNAPPY OLE CONTROL ... 10
SNAPPY COM INTERFACE ..10

SNAPPY OLE CONTROL ... 12
GETTING STARTED .. 12

License ... 12
Purpose of the OLE Reference Sections 12
Class information for CSnappyCtrl 12

OLE CONTROL PROPERTIES .. 13
AutomaticSnapMode ID 8 13
AutoShow ID 6 ... 14
AutoSnapTime ID 9 14
Blue ID 24 .. 14
Brightness ID 18 .. 14
CameraSource ID 13 14
ColorSource ID 14 14
Contrast ID 19 .. 14
CropBottom ID 29 .. 15
CropLeft ID 27 .. 15
CropRight ID 28 ... 15
CropTop ID 26 ... 15
DelaySnapTime ID 10 15
Gamma ID 20 ... 15
Green ID 23 ... 16
ImageAspectCorrect ID 4 16
ImageBitDepth ID 33 16
ImageHeight ID 32 16
ImageOptimizedPalette ID 5 17
ImageWidth ID 31 .. 17
LPTPort ID 12 ... 17
Negative ID 15 .. 17
NewWndOpt ID 7 .. 17
Picture ID 30 ... 18
PreviewTimeOut ID 35 18
PreviewType ID 53 18
ProcessFilter ID 54 18
Red ID 22 ... 19
Saturation ID 17 .. 19
SaveFileCompression ID 2 19
SaveFileName ID 1 19
SaveFileType ID 3 19
Sharpness ID 21 ... 20
SnapMode ID 11 .. 20
Termination ID 25 20
Tint ID 16 .. 21
UnprocessedSnappyData ID 36 21
VideoFormat ID 34 21

OLE CONTROL METHODS .. 21
Abort ID 40 ... 22
AboutBox ID DISPID_ABOUTBOX 21
CanProcess ID 46 .. 22
CopyToClipboard ID 47 22

4

FreeUnprocessedSnappyData ID 56 22
GetMaxCropHeight ID 49 22
GetMaxCropWidth ID 48 22
PrepareToSnap ID 39 23
Preview ID 38 ... 23
Process ID 52 ... 23
ProcessLine ID 45 23
SavePicture ID 42 23
SaveSettingsAsDefault ID 43 24
ShowPictureAndWait ID 50 24
ShowUI ID 41 .. 24
Snap ID 37 .. 24
SnapOnly ID 55 .. 24
UseDefaultSettings ID 44 25
VerifyPicSaved ID 51 25

OLE CONTROL EVENTS ... 25
BatteryLowChanged ID 7 25
DataAvailable ID 14 25
Error DISPID_ERROREVENT 26
FieldSnapped ID 1 26
PictureAvailable ID 2 26
PictureNameChanged ID 12 26
PowerChanged ID 5 26
PreviewAvailable ID 3 27
PreviewTimeout ID 15 27
ReadyToSnap ID 4 .. 27
RequestCloseUI ID 13 27
UIClose ID 11 ... 28
UIOpened ID 10 .. 28
VideoAvailChanged ID 9 28
VideoHotChanged ID 8 28
VideoThruChanged ID 6 28

SNAPPY COM INTERFACE ... 29
GETTING STARTED .. 29

Using the MIDL Compiler 29
What Are All These Files For? 29

dlldata.c ..29
snappy.h ...30
snappy_i.c ... 30
snappy_p.c ... 30

INTERFACE ISNAPPY .. 30
Data Members .. 30
ISnappy::ESnapMode 30
Function Members .. 31

Snappy Settings .. 31
Set ... 31
Get ... 31
Snapping ...31

ISnappy::Abort .. 31
ISnappy::GetDefaultSettings 31
ISnappy::GetSnapMode 32
ISnappy::IsSourceCamera 32
ISnappy::IsSourceColor 32
ISnappy::IsSourceNegative 32
ISnappy::SaveCurrentSettingsAsDefault 33
ISnappy::SetAdvise 33
ISnappy::SetInputSource 33
ISnappy::SetSnapMode 34
ISnappy::SetSourceColor 34

5

ISnappy::SetSourceNegative 34
ISnappy::Snap ... 34
ISnappy::SnapToUnprocessedData 35

INTERFACE ISNAPPYADVISESYNC 35
Data Members .. 36
ISnappyAdviseSync::ESnappyPhase 36
ISnappyAdviseSync::ESnappyWarning 36
Function Members .. 36
ISnappyAdviseSync::OnDataReady 37
ISnappyAdviseSync::OnDIBReady 37
ISnappyAdviseSync::OnError 37
ISnappyAdviseSync::OnFieldSnapped 37
ISnappyAdviseSync::OnHotVideoChanged 38
ISnappyAdviseSync::OnLineProcessed 38
ISnappyAdviseSync::OnLowBatteryChanged 38
ISnappyAdviseSync::OnPowerChanged 38
ISnappyAdviseSync::OnPreviewImageReady 39
ISnappyAdviseSync::OnReadyToSnap 39
ISnappyAdviseSync::OnStatusUpdate 39
ISnappyAdviseSync::OnVideoAvailableChanged 40
ISnappyAdviseSync::OnVideoThruChanged 40
ISnappyAdviseSync::OnWarning 40

INTERFACE ISNAPPYHARDWARE 41
Function Members .. 41

Settings ...41
AdviseSync Interface 41
Termination .. 41
Video Mode ... 41
Power Mode ... 41
Ports ... 41
Snap Preparation 41

ISnappyHardware::GetLPTPort 41
ISnappyHardware::GetNumPorts 42
ISnappyHardware::IsPowerSaver 42
ISnappyHardware::IsSVideo 42
ISnappyHardware::IsTerminated 42
ISnappyHardware::PowerSaver 43
ISnappyHardware::PrepareToSnap 43
ISnappyHardware::SetAdvise 43
ISnappyHardware::SetLPTPort 43
ISnappyHardware::SetSVideo 44
ISnappyHardware::SetTermination 44

INTERFACE ISNAPPYPREVIEW2 44
Function Members .. 44
ISnappyPreview2::Abort 45
ISnappyPreview2::Alloc24BitPreviewDIB 45
ISnappyPreview2::AllocPreviewDIB 45
ISnappyPreview2::FreePreviewDIB 45
ISnappyPreview2::SetAdvise 45
ISnappyPreview2::SetPreviewDIB 46
ISnappyPreview2::StartPreviewing 46
ISnappyPreview2::UnlockPreviewImage 46

INTERFACE ISNAPPYPROCESS47
Function Members .. 47

Notification ... 47
Loading and Saving47
Snappy Data .. 47
Process Settings ..47
Process Snappy Data47

6

DIB ... 47
Speed ..48
Image Size and Cropping 48
Image Settings (Setting Range -50 to 50) 48

ISnappyProcess::Abort 48
ISnappyProcess::AllocProcessDIB 48
ISnappyProcess::CanProcess 49
ISnappyProcess::FreeProcessDIB 49
ISnappyProcess::GetBlue 49
ISnappyProcess::GetBrightness 50
ISnappyProcess::GetContrast 50
ISnappyProcess::GetDefaultProcessSettings 50
ISnappyProcess::GetGamma 50
ISnappyProcess::GetGreen 50
ISnappyProcess::GetImageSize 51
ISnappyProcess::GetMaxCropSize 51
ISnappyProcess::GetRed 51
ISnappyProcess::GetSaturation 52
ISnappyProcess::GetSharpness 52
ISnappyProcess::GetSnappyData 52
ISnappyProcess::GetSourceCropping 52
ISnappyProcess::GetTint 53
ISnappyProcess::LoadSnappyData 53
ISnappyProcess::ProcessSnappyData 54
ISnappyProcess::ProcessSnappyDataLine 54
ISnappyProcess::SaveCurrentProcessSettingsAsDefault 54
ISnappyProcess::SaveSnappyData 54
ISnappyProcess::SetAdvise 54
ISnappyProcess::SetBlue 55
ISnappyProcess::SetBrightness 55
ISnappyProcess::SetContrast 55
ISnappyProcess::SetGamma 55
ISnappyProcess::SetGreen 55
ISnappyProcess::SetImageSize 56
ISnappyProcess::SetProcessDIB 56
ISnappyProcess::SetProcessSpeed 56
ISnappyProcess::SetRed 57
ISnappyProcess::SetSaturation 57
ISnappyProcess::SetSharpness 57
ISnappyProcess::SetSourceCropping 57
ISnappyProcess::SetTint 58
ISnappyProcess::UseSnappyData 58

7

Introduction
The Snappy Programmer’s Reference provides a programmer with information
required for creating custom applications for Snappy. The Snappy API provides
two independent and mutually exclusive methods for controlling the Snappy
hardware. The API provided by the embeddable OLE/OCX control is easy to use
and provides all the functionality of the Snappy application itself. There are also
interfaces within the Snappy DLL which can be accessed directly through COM.
In general, using the COM objects will be more complicated than using the OCX
and some niceties such as the ability to save image files are not available through
the COM interface.

Roadmap
This section contains brief descriptions of OLE and COM, and references to
additional information.

The Snappy Programmer’s Reference contains the following chapters:
• Introduction provides some sense of direction for newcomers to the COM

object model by providing links to lots of help, references, and tutorials. The
section Graphic Orientation to the Snappy API shows the relationship between
various components in the Snappy API. The section Snappy Data Processing
Steps shows the different processing phases that occur when using Snappy.

• Snappy OLE Control is the reference for the OLE control object provided by
Snappy.ocx

• Snappy COM Interface is the reference for the COM object interface to
Snappyn.dll or Snappyp.dll, defined by Snappy.idl. (Snappyn.dll is the NTSC
version while Snappyp.dll is the PAL version.)

8

 Graphic Orientation to the Snappy API
 Figure 1 shows the two Snappy APIs: the Snappy OLE Control, provided through
Snappy.ocx, and the COM interfaces to Snappy’s Dynamic Link Library,
Snappyn.dll or Snappyp.dll (NTSC and PAL versions).

 Most applications will use the API provided through the embedded control,
Snappy.ocx, since it provides complete access to file processing, GUI objects, and
low-level Snappy processing DLLs.

 Some applications may provide their own file and GUI facilities in place of those
provided by Play Incorporated. These applications may access the COM interfaces
to Snappyn.dll or Snappyp.dll directly without going through Snappy.ocx, as
indicated by the dashed line in Figure 1.

 High-Level API Snappy.ocx Snappy OLE Control
 Low-Level API Snappyn.dll or Snappyp.dll Snappy dynamic link library

 Low-Level

 Support Libraries

 Graphics

 Set of objects for loading, saving, and
translating different file and memory
based graphics image formats

 User Interface Snappy user interface objects

 Figure 1. Hierarchy of Snappy components

9

 Snappy Data Processing Steps
 Figure 2 illustrates the
different phases that a
signal progresses
through from the initial
video input to a final
picture.

 During the first phase,
the video signal is
acquired and analyzed.
The first phase results
in unprocessed Snappy
data which is stored in
memory. This memory
is accessed with the
ISnappyProcess
memory members:
UseSnappyData, and
GetSnappyData. The
members:
LoadSnappyData and
SaveSnappyData
provide file storage
capability.

 In the second phase,
Snappy data is actually
processed to generate
an RGB Device-
Independent Bitmap
(DIB).

 An application
program can take
advantage of the
separate phases by
instantiating different
objects to handle the
second phase. After
Snappy produces the
unprocessed data,
indicated by a notification event, some instantiation of a second-phase object can
call GetSnappyData to make a copy of the data. Snappy may then immediately

 Figure 2. Snappy Data Processing Blocks

10

resume capturing unprocessed data. Meanwhile, the second-phase object uses the
copy of the previous data through a call to UseSnappyData, and begins processing
with whatever it wants to do. In this manner, multiple second-phase objects can
perform concurrent independent processing, while Snappy continues to create
unprocessed data.

 Snappy OLE Control
 The Snappy OLE Control, Snappy.ocx, provides a method to completely control
Snappy and the Snappy application interface through an independent developer’s
application. The control may be inserted into container applications. It should be
noted that container applications exhibit many different behaviors with respect to
OLE control objects. Controls that work perfectly with one container may fail to
work in another and Snappy is no different.

 Note The Snappy hardware must be present on the machine for this to work!

 The embeddable control behaves similarly to the Snappy application: please refer
to the Snappy user’s manual for information on using Snappy.

 You can also write container applications using Visual Basic or Visual C++ to
control the methods and properties for the embedded control.

 Where to Find More Information
 The chapter Snappy OLE Control assumes some familiarity with OLE controls. If
you are new to OLE control programming, please refer to the appropriate
Microsoft documentation as well as the documentation for your programming
environment.

 Snappy COM Interface
 The Snappy COM interface, Snappy.idl, provides a method to control Snappy
through certain low-level methods. Note that this interface does not make any
provisions for a user interface or file access--these must be provided entirely by
the independent developer’s application.

 Where to Find More Information
 The chapter Snappy COM Interface assumes a solid understanding of COM
programming. While not necessarily so, this chapter assumes that the programmer
is using the Visual C++ language and WIN32 SDK environments. If you are new

11

to programming with the Component Object Model (COM), please refer to the
appropriate Microsoft documentation, such as: the OLE Programmer’s
Reference and the OLE COM Tutorial included in the WIN32 SDK Online
Help. A complete book on the subject is: Brockschmidt, Kraig, Inside Ole,
Second Edition, Microsoft Press, 1995.

12

 Snappy
 OLE Control

 This chapter covers Snappy.ocx, the OLE control for controlling Snappy from
custom applications. (This chapter assumes some familiarity with OLE. Please
refer to the appropriate Microsoft documentation for more information.)

 Note If you have a release of Snappy.ocx dated prior to 11-28-98, please discard it and
 use the new version instead!

 Getting Started
 An easy way to see how the Snappy OLE Control works, is to drop the control
into a container provided by Microsoft Visual C++ or Visual Basic then simply
peruse to see what it does.

 License
 Before you can use Snappy.ocx, the license file, Snappy.lic must be located in the
same directory. The license is distributed with the Snappy release.

 Purpose of the OLE Reference Sections
 The following sections specify the Snappy.ocx features:
• OLE Control Properties
• OLE Control Methods
• OLE Control Events

 OLE Control Properties
 Most Snappy properties fall into one of three categories: Acquire, Adjust, and
Save. The Acquire properties set Snappy parameters for acquiring the video
snapshot. The Adjust properties set Snappy parameters for processing Snappy
data and creating a DIB. The Save properties are settings for saving the processed
image.

 The syntax for accessing the properties will vary depending upon the development
environment. Following are examples for Visual Basic and Visual C++. If you

13

are using a different environment you will need to use the appropriate conventions
for that environment.

 In Visual Basic 5, you simply use the name of the property and the language will
determine if you are getting or setting the property from the context in which you
are using the property name. For example, if you have a Snappy control named
SnappyCtrl embedded in a form, you can use the syntax
SnappyCtrl.AutomaticSnapMode = 0
 to set a property value and you can use the syntax
 snapmode = SnappyCtrl.AutomaticSnapMode
 to retrieve a property value.

 Visual C++ 5, on the other hand, requires that you use the prefixes Get and Set
with the property name when accessing a property. If you have a member variable
of type CSnappy named m_SnappyCtrl you would use the syntax
 m_SnappyCtrl.SetAutomaticSnapMode(0);
 to set a property value and the syntax
 nSnapMode = m_SnappyCtrl.GetAutomaticSnapMode();
 to retrieve a property value.

 Example programs files are available for reference purposes. You should also
refer to the appropriate documentation for working with OLE controls within your
development environment.

 AutomaticSnapMode ID 8
 short AutomaticSnapMode;

 Indicates the snapping mode used when the Snap() method is invoked. This
correlates directly to the “Snap Type” setting within the Snappy Application.

 Valid values are:
 0 -- Normal Snapping
 1 -- Continuous Snapping
 2 -- Countdown Snapping, with delay determined by DelaySnapTime

 It should be noted that some programming environments will only allow the
“Normal” snap mode to be used. This is determined by how the programming
environment embeds the control within the application. Furthermore, a
programming environment may not be able to set this property to a particular
value at design time but the application being developed may be able to set it to
the same value at run time. If the value is unavailable at run time then an Error
event will be fired when the client tries to set the property to that value.

 See Also DelaySnapTime

14

 AutoShow ID 6
 boolean AutoShow;

 Set to TRUE to show a picture full screen at the end of processing and wait for a
keyboard input or mouse click--requires user input when TRUE.

 AutoSnapTime ID 9
 short AutoSnapTime;

 Not currently implemented.

 Blue ID 24
 short Blue;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 Brightness ID 18
 short Brightness;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 CameraSource ID 13
 boolean CameraSource;

 If TRUE, sets time-based input (camera). If FALSE, sets tape input.

 ColorSource ID 14
 boolean ColorSource;

 If TRUE, sets to color input. If FALSE, sets to black-and-white input.

 Contrast ID 19
 short Contrast;

15

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 CropBottom ID 29
 short CropBottom;

 Set the offset, in field coordinates, of the bottom of the source cropping rectangle
from that of the maximum field size. It does not affect the size of the DIB.

 CropLeft ID 27
 short CropLeft;

 Set the offset, in field coordinates, of the left side of the source cropping rectangle
from that of the maximum field size.

 CropRight ID 28
 short CropRight;

 Set the offset, in field coordinates, of the right side of the source cropping
rectangle from that of the maximum field size.

 CropTop ID 26
 short CropTop;

 Set the offset, in field coordinates, of the top of the source cropping rectangle
from that of the maximum field size.

 DelaySnapTime ID 10
 short DelaySnapTime;

 Sets the Delay for AutomaticSnapMode, in seconds.

 See Also AutomaticSnapMode

 Gamma ID 20
 short Gamma;

16

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 Green ID 23
 short Green;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 ImageAspectCorrect ID 4
 boolean ImageAspectCorrect;

 If TRUE, maintains the 4:3 aspect ratio of the image when changing one of the
ImageWidth or ImageHeight settings by adjusting the opposite control to match
the aspect ratio. This only affects subsequent settings of the ImageWidth and
ImageHeight properties. The current property values will remain unaffected.

 ImageBitDepth ID 33
 short ImageBitDepth;

 The highest bit depth that images will be processed to. The bit depth of the DIBs
created by the Snap() and Process() methods will be the lesser of this value and
the bit depth of the display.

 Valid values are:
 4 -- 16 colors
 8 -- 256 colors
 16 -- 65K colors (High Color)
 24 -- 16 million colors (True Color)

 See Also ImageOptimizedPalette

 ImageHeight ID 32
 short ImageHeight;

 The image height in pixels. If ImageAspectCorrect is TRUE, then setting this
value will cause the ImageWidth property to change also.

17

 See Also ImageAspectCorrect

 ImageOptimizedPalette ID 5
 boolean ImageOptimizedPalette;

 Optimizes the palette based upon the colors in the captured video.

 ImageWidth ID 31
 short ImageWidth;

 The image width in pixels. If ImageAspectCorrect is TRUE, then setting this
value will cause the ImageHeight property to change also.

 See Also ImageAspectCorrect

 LPTPort ID 12
 short LPTPort;

 The current LPT port that Snappy is assigned to (typically 1-3). Setting this
property to zero will cause the default port value stored in the system registry to
be used. The OCX, upon instatiation, will use the value in the registry by default
so typically this value does not need to be set.

 Negative ID 15
 boolean Negative;

 If TRUE, the input is considered to be a negative and thus the colors are
complemented to create a normal color image. This conversion is done during
Snappy data acquisition and does not effect the process stage.

 NewWndOpt ID 7
 boolean NewWndOpt;

 If TRUE, new windows are opened for each snapped image. This only applies if
the Snappy user interface is visible.

18

 Picture ID 30
 IPictureDisp* Picture;

 This is the active picture. Getting this value gives you the picture that was last
snapped or processed. Setting this value allows you to select a previously active
image for saving. (If the image to be saved was the last one snapped or processed
there is no need to set this property.)

 PreviewTimeOut ID 35
 short PreviewTimeOut;

 The preview time out value. Previewing will stop after the specified number of
seconds. A value of zero disables the time out feature. Some programming
environments do not support the preview time out feature so it will always be
disabled in applications created with those environments.

 PreviewType ID 53
 short PreviewType;

 The type of preview image.

 Valid values are:
 0 -- Black and White Preview
 1 -- Color Preview

 If the ColorSource property is FALSE, the preview will be black and white
regardless of this setting.

 ProcessFilter ID 54
 short ProcessFilter;

 The type of filtering to be used during processing.

 Valid values are:
 0 -- Fast (lowest quality)
 1 -- Normal
 2 -- Slow (High Definition mode)

19

 Red ID 22
 short Red;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 Saturation ID 17
 short Saturation;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 SaveFileCompression ID 2
 short SaveFileCompression;

 For file types that support compression, this specifies the amount of compression
desired. The range will vary with the file format. Not all formats support
compression.

 For the version of Snappy addressed by this document, only two file formats
support compression. For JPEG files, this value actually relates to the JPEG
quality factor and thus ranges from 0 to 100 with 100 being highest quality and
thus lowest compression. For TIFF files, a value of 0 indicates no compression, 1
indicates RLE compression, and 2 indicates JPEG compression. LZW
compression is not supported due to licensing issues.

 SaveFileName ID 1
 BSTR SaveFileName;

 The filename to store the image data under. This is the full path, filename, and
extension. Note that the extension specified as part of this filename has no
bearing on the format used to store the file.

 See Also SaveFileType, PictureNameChanged

 SaveFileType ID 3
 BSTR SaveFileType;

20

 Indicates the file type by file extension.

 Currently, the supported types are:
 BMP -- Windows Bitmap
 IFF -- Amiga Interchange File Format
 JPG -- JPEG
 PCX -- PC Paintbrush
 PNG -- Portable Network Graphic
 TGA -- Targa
 TIF -- Tagged Image File

 Note that this determines only the format used to save the file – it does not
determine the file extension of that file. The file extension is specified as part of
the filename.

 Sharpness ID 21
 short Sharpness;

 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 SnapMode ID 11
 short SnapMode;

 Sets the current snap mode. This is equivalent of the “Picture Quality” setting
within the Snappy application.

 Valid values are:
 0 -- Moving
 1 -- Still
 2 -- High Quality
 3 -- Highest Quality

 Termination ID 25
 short Termination;

 Indicates whether Snappy is terminating the video source or if another device such
as a monitor is terminating the source through the Snappy Video Thru connector.

21

 Tint ID 16
 short Tint;
 Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

 UnprocessedSnappyData ID 36
 OLE_HANDLE UnprocessedSnappyData;

 The handle to the snapped data that Snappy processes into an image. Snapping
creates this data, processing uses it to create the final image. See Figure 2.

 Any call to retrieve this value should be paired with a call to
FreeUnprocessedSnappyData() when the client no longer needs the data. Failure
to do so will result in a memory leak. Multiple instances of Snappy Data may be
kept by the client and selected as the current data by setting this property.

 If data is successfully acquired (the return value is not NULL) then the client may
invoke the Process() method after setting this property to the data previously
obtained.

 See Also FreeUnprocessedSnappyData(), Process(), Snap(), SnapOnly()

 VideoFormat ID 34
 BSTR VideoFormat;

 0 NTSC, requires Snappyn.dll
 1 PAL, requires Snappyp.dll

 OLE Control Methods
 This section covers the dispatch interface for the Snappy OLE Control.

 Abort ID 40
 boolean Abort();

 Aborts a Preview(), Snap(), or SnapOnly() that is in progress.

22

 AboutBox ID DISPID_ABOUTBOX
 boolean AboutBox();

 Invoking this function displays Snappy’s About box.

 CanProcess ID 46
 boolean CanProcess();

 Indicates if the Process() method can process the current unprocessed data using
the current process settings.

 CopyToClipboard ID 47
 boolean CopyToClipboard();

 Copies the current processed image bitmap to the Windows Clipboard.

 FreeUnprocessedSnappyData ID 56
 boolean FreeUnprocessedSnappyData(OLE_HANDLE hSnappyData);

 Frees the Snappy Data created by retrieving the UnprocessedSnappyData
property. All calls that retrieve the property value should be paired with a call to
this method or a memory leak will result.

 See Also UnprocessedSnappyData

 GetMaxCropHeight ID 49
 short GetMaxCropHeight();

 Returns the maximum useable video field height.

 GetMaxCropWidth ID 48
 short GetMaxCropWidth();

 Returns the maximum useable video field width.

23

 PrepareToSnap ID 39
 boolean PrepareToSnap();

 Turn Snappy on so that next Snap() or SnapOnly() occurs as quickly as possible.

 Preview ID 38
 boolean Preview();

 Start the preview process. The preview will be of the type specified by the
PreviewType property. Each time a preview image is ready, the PreviewAvailable
event will be fired.

 Process ID 52
 boolean Process();

 Process the current snap data using the current process settings to create a DIB.
This is invoked after the SnapOnly() method has resulted in the DataAvailable
event being fired. After processing is complete, the PictureAvailable event is
fired.

 The Process() method can be called multiple times with the same snap data but
different process settings and each will result in its own DIB. Thus by using the
SnapOnly() and Process() methods you could allow the user to adjust process
properties such as Contrast and reprocess a snap without resnapping.

 See Also Snap(), SnapOnly()

 ProcessLine ID 45
 boolean ProcessLine(short nLine, long* pBits);

 Process one line of snap data. Clients using this OLE control will usually not
invoke this method and will instead invoke either the Snap() method which
automatically does processing or the SnapOnly() and Process() methods.

 SavePicture ID 42
 boolean SavePicture();

24

 Saves the current picture according to the settings previously made with the Save
properties.

 SaveSettingsAsDefault ID 43
 boolean SaveSettingsAsDefault();

 Sets the current settings such as snap mode, input source, and source type as the
default in the system registry.

 ShowPictureAndWait ID 50
 boolean ShowPictureAndWait();

 Takes the current Snappy picture, displays it full screen, then waits for a mouse
click or keypress to continue. If no picture is available then FALSE is returned.

 ShowUI ID 41
 boolean ShowUI(boolean bShow);

 Opens or Closes the Snappy user interface as determined by the parameter bShow.

 Snap ID 37
 boolean Snap();

 Snap a picture using the current snap mode then automatically process it with the
current process settings and create a DIB. When the processed image is ready, the
PictureAvailable event is fired. This does NOT allow direct reprocessing of snaps
using the Process() method. If the image needs to be adjusted, the Snap() method
can be invoked again after the appropriate settings have been changed -or- the
client may retreive the UnprocessedSnapData property, set it back, alter the
desired process settings, then invoke the Process() method.

 See Also UnprocessedSnapData, SnapOnly(), Process()

 SnapOnly ID 55
 boolean SnapOnly();

25

 Snap a picture using the current snap mode but do not process the data. When the
snap is complete and the snap data is ready the DataAvailable event is fired. To
get a DIB that can be used, the Process() method must be invoked. Using the
SnapOnly() method results in snap data that can be processed over and over
without resnapping. The client need not worry about the UnprocessedSnapData
property as the data is managed within the OCX when this method is used. This
method may only be invoked if the UI is not currently being shown.

 See Also Snap(), Process()

 UseDefaultSettings ID 44
 boolean UseDefaultSettings();

 Get the default property values such as snap mode, input source, and source type
from the system registry.

 VerifyPicSaved ID 51
 boolean VerifyPicSaved();

 This function checks to see if all snapped pictures up to this point have been
saved. A good place to call this is when handling the RequestCloseUI event.

 OLE Control Events
 This section covers the event dispatch interface for Snappy OLE Control. These
are events that are fired upon the conditions specified. Your application can have
routines that handle each of these events as required and/or desired.

 BatteryLowChanged ID 7
 void BatterLowChange(boolean bLow);

 The state of Snappy’s voltage has changes. If bLow is TRUE, the battery is low.

 DataAvailable ID 14
 void DataAvailable();

26

 The snap data is available. This event is fired only after the SnapOnly() method is
invoked. It indicates that the snap has taken place and the data is ready to be
processed into an image using the Process() method.

 Error ID DISPID_ERROREVENT
 void Error(short Number, BSTR* Description, long Scode, BSTR Source,

 BSTR HelpFile, long HelpContext, boolean* CancelDisplay);

 Standard OLE Error notification called when the Snappy control has an error.

 Following is a list of the most likely error codes you will see:
 57 – Snappy was busy.
 68 – Snappy not found (or LPT port not available).
 604 – Settings changed while snapping.
 607 – Timer Failure. The OCX experienced problems with a timer event.
 (Does your programming environment allow Snappy to use timers?)
 608 – File save failed.

 FieldSnapped ID 1
 void FieldSnapped();
 One video field was just snapped.

 PictureAvailable ID 2
 void PictureAvailable();

 A processed picture (DIB) is available. Your application needs to examine the
Picture property to retrieve the image.

 PictureNameChanged ID 12
 void PictureNameChanged(BSTR PicName);

 The control’s SaveFileName property changed. If SaveFileName was the default
filename, SaveFilename is modified every time the picture is snapped.

 PowerChanged ID 5
 void PowerChanged(boolean bOn);

27

 The Snappy power state changed. If bOn is TRUE, the power is now on. If
FALSE, the power is off.

 PreviewAvailable ID 3
 void PreviewAvailable();

 A preview image is available for display. Your application needs to examine the
Picture property to retrieve the preview image. Note that a color preview DIB
does not have square pixels like most people assume. If you render it assuming
square pixels, the image will look very squished. You need to render it into a
rectangle with a 4:3 aspect ratio. B&W preview does have square pixels.

 PreviewTimeout ID 15
 void PreviewTimeout();

 The Snappy was previewing and the time period defined by the PreviewTimeOut
property has passed. This event indicates that the Snappy is no longer previewing
and thus no more PreviewAvailable events will be fired until the Preview()
method is invoked again.

 Some programming environments do not allow the preview time-out feature to
function. Applications developed in such environments will never receive this
event as the feature is effectively disabled.

 ReadyToSnap ID 4
 void ReadyToSnap();

 The Snappy hardware is powered up and ready to capture video.

 RequestCloseUI ID 13
 void RequestCloseUI(boolean* Cancel);

 When the Snappy user interface is shown and the user requests the UI be closed
(by clicking on the close window button for example), this event is sent so that a
confirmation box may be presented. Set Cancel to FALSE to allow the close.

 See Also VerifyPicSaved

28

 UIClose ID 11
 void UIClose();

 This event indicates that the Snappy user interface successfully changed from the
open state to the closed state.

 UIOpened ID 10
 void UIOpened();

 This event indicates that the Snappy user interface successfully changed from the
closed state to the open state.

 VideoAvailChanged ID 9
 void VideoAvailChanged(boolean bAvail);

 The state of the input video has changed. If bAvail is FALSE, video is not
available.

 VideoHotChanged ID 8
 void VideoHotChanged(boolean bHot);

 The state of Snappy’s video signal legality has changed. If bHot is TRUE, the
video is hot.

 VideoThruChanged ID 6
 void VideoThruChanged(boolean bUsingThru);

 The termination changed. If bUsingThru is TRUE the Snappy is terminating (not
Video Thru – no monitor is attached). FALSE indicates Snappy is not terminating
(Video Thru – a monitor is attached).

29

 Snappy
 COM Interface

 This chapter covers the set of COM interfaces for accessing snappyn.dll. These
interface are:
• ISnappy for loading and saving defaults, and for snapping data.
• ISnappyAdviseSync for obtaining notification about processing status.
• ISnappyHardware for obtaining hardware status.
• ISnappyPreview2 for previewing a snap before actually snapping.
• ISnappyProcess for processing the snapped data.

 (The information in this chapter assumes a solid understanding of the Component
Object Model, or COM. Please see the references noted in the chapter
Introduction, section Roadmap for more information.)

 Getting Started

 Using the MIDL Compiler
 The idl file (for interface definition language), snappy.idl, is to be passed through
the midl command-line compiler. Midl will analyze the snappy.idl file and
produce files named dlldata.c, snappy.h, snappy_i.c, and snappy_p.c.

 What Are All These Files For?
 The file snappy.idl of course, is the definition of the interface that you input into
midl. The midl outputs are:
• dlldata.c
• snappy.h
• snappy_i.c
• snappy_p.c

 dlldata.c
 You may delete this file. It isn’t necessary.

30

 Snappy.h
 The interface header file, snappy.h, contains type definitions and function
declarations based on the interface definition in the IDL file. Include snappy.h in
the source file for your client application.

 Snappy_i.c
 The interface UUID file contains the actual definitions of the IIDs and CLSIDs,
which your client uses for interface identification. When you build your client,
make and link snappy_i.c as part of the project.

 Snappy_p.c
 This would be the source for the RPC proxy/stub dll for passing interface function
arguments and return values across process/machine boundaries (marshaling), if
we were remoting Snappy. But we’re not--snappyn.dll is strictly to be used as an
in-process server on a local machine, so you can throw away snappy_p.c.

 Interface ISnappy
 The ISnappy interface provides functionality for:
• Loading and saving default settings for the snap mode, the input source, and

the source type.
• Snapping picture data with or without processing, and aborting snaps.

 Data Members
 ESnapMode Enumeration of modes: Moving, Still, HighQuality, and

 HighestQuality.

 ISnappy::ESnapMode
 typedef enum tagSnapMode
 {
 Moving, 1 video field
 Still, 1 field, looked at twice to get better color
 HighQuality, 2 fields (frame), looked at twice (full color frame)
 HighestQuality Special 35ns mode (requires time-based input)
 } ESnapMode;

 See Also GetSnapMode, SetSnapMode

31

 Function Members

 Snappy Settings

 Set
 SetAdvise Sets an optional AdviseSync interface to be used to notify

 snap progress, when snap is complete, and/or errors.
 SaveCurrentSettingsAsDefault

 Sets the current SnapMode, InputSource, and SourceType
 as the default in the system registry.

 SetSnapMode Set the current SnapMode.
 SetInputSource Set the current input source. (camera or tape)
 SetSourceColor Set the current input type. (color or black-and-white)
 SetSourceNegative Set the current negative input option.

 Get
 GetDefaultSettings Get the default SnapMode, InputSource, and SourceType

 from the system registry.
 GetSnapMode Get the current SnapMode.
 IsSourceCamera Get current camera vs. tape setting.
 IsSourceColor Get current color vs. black-and-white setting.
 IsSourceNegative Get current normal vs. negative setting.

 Snapping Functions
 Snap Snap a picture now (using current settings). Process it with

 the current process settings (set with the ISnappyProcess
 interface), and create a DIB.

 SnapToUnprocessedData
 Snap data now (using current settings).

 Abort Abort snapping.

 ISnappy::Abort
 HRESULT Abort();

 Abort snapping.

 See Also ISnappyAdviseSync::OnWarning, ISnappyPreview::Abort,
 ISnappyProcess::Abort

 ISnappy::GetDefaultSettings
 HRESULT GetDefaultSettings();

32

 Get the default SnapMode, InputSource, and SourceType from the system registry.

 See Also GetSnapMode, SaveCurrentSettingsAsDefault, IsSourceCamera, IsSourceColor,
 IsSourceNegative

 ISnappy::GetSnapMode
 HRESULT GetSnapMode([out] ESnapMode* pSnapMode);

 pSnapMode Pointer to the SnapMode variable that will be set.

 Get the current SnapMode.

 See Also ESnapMode, SetSnapMode, GetDefaultSettings, SaveCurrentSettingsAsDefault

 ISnappy::IsSourceCamera
 HRESULT IsSourceCamera([out] BOOL* pbCamera);

 pbCamera Pointer to variable to be set to TRUE if camera input, FALSE if

 not.

 Get current camera vs. tape setting.

 See Also GetDefaultSettings, SetInputSource, IsSourceColor, IsSourceNegative

 ISnappy::IsSourceColor
 HRESULT IsSourceColor([out] BOOL* pbColor);

 pbColor Pointer to variable that will be set TRUE if color input, FALSE if
 B&W.

 Get current color vs. B&W setting.

 See Also GetDefaultSettings, SetSourceColor, IsSourceCamera, IsSourceNegative

 ISnappy::IsSourceNegative
 HRESULT IsSourceNegative([out] BOOL* pbNegative);

33

 pbNegative Pointer to variable that will be set TRUE if negative input, FALSE
 if normal.

 Get current normal vs. negative setting.

 See Also GetDefaultSettings, SetSourceNegative, IsSourceCamera, IsSourceColor

 ISnappy::SaveCurrentSettingsAsDefault
 HRESULT SaveCurrentSettingsAsDefault();

 Sets the current SnapMode, InputSource, and SourceType as the default in the
system registry.

 See Also GetDefaultSettings, SetAdvise, SetSnapMode, SetInputSource, SetSourceColor,
 SetSourceNegative

 ISnappy::SetAdvise
 HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

 pNotify Pointer to the interface to call for notification.

 Sets an optional AdviseSync interface to be used to notify snap progress, when
snap is complete, and/or errors.

 Note pNotify may be NULL; if NULL, calls that use Advise will not return until they are
 complete.

 See Also ISnappyAdviseSync, ISnappyHardware::SetAdvise, ISnappyPreview::SetAdvise,
 ISnappyProcess::SetAdvise

 ISnappy::SetInputSource
 HRESULT SetInputSource([in] BOOL bCamera);

 bCamera If TRUE, sets camera (time-based) input otherwise, sets tape input.

 Set the current input source.

 See Also GetDefaultSettings, IsSourceCamera, SaveCurrentSettingsAsDefault

34

 ISnappy::SetSnapMode
 HRESULT SetSnapMode([in] ESnapMode eSnapMode);

 eSnapMode The SnapMode variable to be used.

 Set the current SnapMode

 Note If eSnapMode is HighestQuality, the InputSourceType is assumed to be a camera
 (time-based) input.

 See Also ESnapMode, GetSnapMode, SaveCurrentSettingsAsDefault

 ISnappy::SetSourceColor
 HRESULT SetSourceColor([in] BOOL bColor);

 bColor If TRUE, sets to color input, otherwise black-and-white input.

 Set the current input type.

 See Also IsSourceColor, GetDefaultSettings, SaveCurrentSettingsAsDefault

 ISnappy::SetSourceNegative
 HRESULT SetSourceNegative([in] BOOL bNegative);

 bNegative If TRUE, sets to negative input, otherwise normal input.

 Set the current negative input option.

 See Also IsSourceNegative, GetDefaultSettings, SaveCurrentSettingsAsDefault

 ISnappy::Snap
 HRESULT Snap([in] HGLOBAL hPackedDIB);

 hPackedDIB Handle of DIB to snap into. May be NULL.

 Snap a picture now (using current settings). Process it with the current process
settings (set with the ISnappyProcess interface), and create a DIB. An
ISnappyAdviseSync notification interface must have been previously defined
through SetAdvise in order to be notified when the DIB is ready.

35

 Note · If the Snappy hardware is busy snapping, SNAPERR_BUSY is returned.
 · If an hPackedDIB is provided and it is not adequate (width, height, etc.), then
 E_BADARG is returned.
 · If hPackedDIB is NULL, a packed DIB is allocated and returned as a parameter
 of ISnappyAdviseSync::OnDIBReady. It is up to the caller to free the memory.

 See Also ISnappyAdviseSync::OnDIBReady, SetAdvise, SnapToUnprocessedData, Abort

 ISnappy::SnapToUnprocessedData
 HRESULT SnapToUnprocessedData();

 Snap data now (using current settings).

 Note An ISnappyAdviseSync notification interface must have been previously defined
 (with SetAdvise) in order to be notified when the UnprocessedData is ready.

 See Also ISnappyAdviseSync::OnDataReady, SetAdvise, Snap, Abort,
 ISnappyProcess::GetSnappyData

 Interface ISnappyAdviseSync
 ISnappyAdviseSync provides a notification interface for various events:
• OnDataReady
• OnDIBReady
• OnError
• OnFieldSnapped
• OnHotVideoChanged
• OnLineProcessed
• OnLowBatteryChanged
• OnPowerChanged
• OnPreviewImageReady
• OnReadyToSnap
• OnStatusUpdate
• OnVideoAvailableChanged
• OnVideoThruChanged
• OnWarning

Note Use the appropriate SetAdvise function listed below in order to receive
notification of desired events.

See Also ISnappy::SetAdvise, ISnappyPreview::SetAdvise, ISnappyProcess::SetAdvise

36

Data Members
ESnappyWarning Enumeration for video warnings.
ESnappyPhase Enumeration for the Snappy phases during a snap.

ISnappyAdviseSync::ESnappyPhase
typedef enum tagSnappyPhase
{
 SP_Acquiring, Indicates that Snappy is performing video-acquisition.
 SP_Analyzing, Indicates that Snappy is performing pre-processing analysis.
 SP_Processing Indicates that Snappy is processing.
} ESnappyPhase;

Enumeration for the Snappy phases during a snap.

See Also OnStatusUpdate

ISnappyAdviseSync::ESnappyWarning
typedef enum tagSnappyWarning
{
 SW_VideoLevelLow, Video signal is not usable (double terminated?)
 SW_NotCamera Camera mode was asked for, but the video is not

time-based.
} ESnappyWarning;

Enumeration for video warnings.

See Also OnWarning

Function Members
OnDIBReady A processed DIB is ready.
OnDataReady Snapped data is ready to be processed.
OnFieldSnapped One field of video was just snapped.
OnLineProcessed A line of SnappyData has been processed.
OnReadyToSnap Snappy is powered up and ready to capture video.
OnPowerChanged Snappy turned on or off.
OnVideoThruChanged Snappy termination changed.
OnPreviewImageReady A preview image is ready to be displayed.
OnLowBatteryChanged The state of Snappy’s voltage has changed.

37

OnHotVideoChanged The state of Snappy’s video signal legality has
changed.

OnVideoAvailableChanged The state of the input video has changed.
OnError An error occurred.
OnStatusUpdate Progress indication.

ISnappyAdviseSync::OnDataReady
HRESULT OnDataReady();

Snapped data is ready to be processed.

Note Use ISnappyProcess::GetSnappyData to retrieve a copy of the data.

See Also ISnappyProcess::GetSnappyData, ISnappyProcess::ProcessSnappyData,
ISnappy::SnapToUnprocessedData, ISnappyProcess::SetAdvise,
ISnappy::SetAdvise

ISnappyAdviseSync::OnDIBReady
HRESULT OnDIBReady([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to a packed DIB (BITMAPINFOHEADER and bits).

A processed DIB is ready.

See Also ISnappy::Snap, ISnappyProcess::ProcessSnappyData

ISnappyAdviseSync::OnError
HRESULT OnError([in] int nErrorNum, int nCheckPoint);

eErrorNum A number specifying the type of error.
eCheckpoint A number specifying the location at which the error was trapped.

An error occurred.

ISnappyAdviseSync::OnFieldSnapped
HRESULT OnFieldSnapped();

One field of video was just snapped.

38

ISnappyAdviseSync::OnHotVideoChanged
HRESULT OnHotVideoChanged([in] BOOL bHot);

bHot TRUE if video is hot (signal too high), FALSE if not.

The state of Snappy’s video signal legality has changed.

Note Hot video areas are displayed red in the preview.

See Also ISnappyHardware, OnPreviewReady

ISnappyAdviseSync::OnLineProcessed
HRESULT OnLineProcessed([in] WORD nLine, [in] BYTE* pBits);

nLine Current line.
pBits Pointer to line of 24-bit RGB triples.

A line of SnappyData has been processed.

See Also ISnappyProcess::ProcessSnappyDataLine

ISnappyAdviseSync::OnLowBatteryChanged
HRESULT OnLowBatteryChanged([in] BOOL bLow);

bLow TRUE if Battery is Low, FALSE if not.

The state of Snappy’s voltage has changed.

Note This is only called when Snappy is previewing.

See Also ISnappyHardware, ISnappyPreview

ISnappyAdviseSync::OnPowerChanged
HRESULT OnPowerChanged([in] BOOL bPower);

bPower TRUE if power is now on, FALSE if off.

Snappy’s power turned on or off.

See Also ISnappyHardware

39

ISnappyAdviseSync::OnPreviewImageReady
HRESULT OnPreviewImageReady([in] HGLOBAL hPackedDIB,

 [in] ISnappyPreview* pPreview);

hPackedDIB Either an 8-bit DIB or a 24-bit packed DIB depending upon the
type of preview. Hot videoareas are displayed red.

pPreview Pointer to an ISnappyPreview interface. This allows a call to
pPreview->UnlockPreviewImage() when the hPackedDIB is used,
so that the memory may be used for future previews.

A preview image is ready to be displayed. Note that a color preview DIB does not
have square pixels like most people assume. If you render it assuming square
pixels, the image will look very squished. You need to render it into a rectangle
with a 4:3 aspect ratio. B&W preview does have square pixels.

Note pPreview->UnlockPreviewImage() must be called when the hPackedDIB is used
and may be made available for continued previewing, or the Previewing will stop.

See Also ISnappyPreview::SetAdvise, OnHotVideoChanged

ISnappyAdviseSync::OnReadyToSnap
HRESULT OnReadyToSnap();

Snappy is powered up and ready to capture video.

See Also ISnappy::SetAdvise

ISnappyAdviseSync::OnStatusUpdate
HRESULT OnStatusUpdate([in] ESnappyPhase ePhaseNum,

 [in] WORD nValue, [in] WORD nTotal);

ePhaseNum Indicates which processing step Snappy is working on.
nValue The current value (use nValue / (nTotal-1) to calculate percent

complete).
nTotal The total number of steps to complete.

Progress indication.

See Also ESnappyPhase

40

ISnappyAdviseSync::OnVideoAvailableChanged
HRESULT OnVideoAvailableChanged([in] BOOL bVideoAvailable);

bVideoAvailable TRUE if video is available, FALSE if not.

The state of the input video has changed.

See Also ISnappyHardware

ISnappyAdviseSync::OnVideoThruChanged
HRESULT OnVideoThruChanged([in] BOOL terminated);

bTerminated TRUE if Terminated (not Video Thru), FALSE if Unterminated
(Video Thru).

Snappy termination.

See Also ISnappyHardware

ISnappyAdviseSync::OnWarning
HRESULT OnWarning([in] ESnappyWarning eWarningNum);

eWarningNum An ESnappyWarning number specifying the type of warning (see
note below).

Something unexpected happened.

Note Clients should respond to the call with one of the following HRESULT values:
E_ABORT = abort
S_FALSE = retry
S_OK or E_NOTIMPL = continue

See Also ESnappyWarning

41

Interface ISnappyHardware
This is the Snappy hardware status interface.

Function Members

Settings

AdviseSync Interface
SetAdvise Sets an AdviseSync interface to notify when the hardware

state changes or, and/or errors.

Termination
IsTerminated Determines if Snappy is terminating the video source

(i.e. Video Thru not being used).
SetTermination Set whether Video Thru is terminated or not.

Video Mode
IsSVideo Determines if Snappy is set to SVideo mode.
SetSVideo Set whether SVideo mode is used.

Power Mode
IsPowerSaver Determines if Snappy is set to PowerSaver mode.
PowerSaver Set whether PowerSaver mode is used.

Ports
GetLPTPort Get the current LPT Port.
SetLPTPort Sets the LPT Port for Snappy to use.
GetNumPorts Get the number of available parallel ports.

Snap Preparation
PrepareToSnap Turn Snappy on so that next snap occurs as fast as possible.

ISnappyHardware::GetLPTPort
HRESULT GetLPTPort([out] WORD* pnPortNum);

pnPortNum The LPT port Snappy is currently assigned to.

Get the current LPT port.

Note If no LPT port has been assigned this call returns E_???.

42

See Also SetLPTPort, GetNumPorts

ISnappyHardware::GetNumPorts
HRESULT GetNumPorts([out] unsigned long* pnNumPorts);

pnNumPorts The number of available parallel ports.

Get the number of available parallel ports.

Note Always returns S_OK.

See Also GetLPTPort, SetLPTPort

ISnappyHardware::IsPowerSaver
HRESULT IsPowerSaver([out] BOOL* pbPowerSaver);

pbPowerSaver Pointer to BOOL, set TRUE if PowerSaver is set, FALSE if not.

Determines if Snappy is set to PowerSaver mode.

Note PowerSaver mode causes Snappy to turn off after snapping and preview mode to
stop if left alone.

See Also PowerSaver

ISnappyHardware::IsSVideo
HRESULT IsSVideo([out] BOOL* pbSVideo);

pbSVideo Pointer to BOOL, set TRUE if SVideo is set, FALSE if not.

Determines if Snappy is set to SVideo mode.

See Also SetSVideo

ISnappyHardware::IsTerminated
HRESULT IsTerminated([out] BOOL* pbTerminated);

pbTerminated Pointer to BOOL, set TRUE if terminated, FALSE if not.

43

Determines if Snappy is terminating the video source (i.e. Video Thru not being
used).

See Also SetTermination

ISnappyHardware::PowerSaver
HRESULT PowerSaver([in] BOOL bPowerSaver);

bPowerSaver TRUE if PowerSaver is to be set, otherwise FALSE.

Set whether PowerSaver mode is used.

See Also IsPowerSaver

ISnappyHardware::PrepareToSnap
HRESULT PrepareToSnap();

Turn Snappy on so that next snap occurs as quickly as possible.

See Also ISnappyAdviseSync::OnReadyToSnap

ISnappyHardware::SetAdvise
HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

pNotify Pointer to the interface to call for notification.

Sets an AdviseSync interface to notify when the hardware state changes or, and/or
errors.

See Also ISnappyAdviseSync, ISnappy::SetAdvise, ISnappyPreview::SetAdvise,
ISnappyProcess::SetAdvise

ISnappyHardware::SetLPTPort
HRESULT SetLPTPort([in] WORD nPortNum);

nPortNum Set the LPT port for Snappy to use.

Sets the LPT port for Snappy to use.

44

See Also GetLPTPort, GetNumPorts

ISnappyHardware::SetSVideo
HRESULT SetSVideo([in] BOOL bSVideo);

bSVideo TRUE if SVideo is to be set, otherwise FALSE.

Set whether SVideo mode is used.

See Also IsSVideo

ISnappyHardware::SetTermination
HRESULT SetTermination([in] BOOL bTerminate);

bTerminate TRUE if termination is to be set FALSE otherwise.

Set whether Video Thru is terminated or not.

See Also IsTerminated

Interface ISnappyPreview2
This is the interface for creating Snappy previews.

Function Members
SetAdvise Sets an AdviseSync interface to notify when an image is

available, and/or errors.
Alloc24BitPreviewDIB Allocates a packed DIB that can be used for color

previewing.
AllocPreviewDIB Allocates a packed DIB that can be used for black and

white previewing.
FreePreviewDIB Frees a packed DIB allocated with Alloc24BitPreviewDIB

or AllocPreviewDIB.
SetPreviewDIB Assigns the DIB used by preview.
StartPreviewing Begin previewing.
Abort Stops previewing.
UnlockPreviewImage Allows Preview to continue previewing.

45

ISnappyPreview2::Abort
HRESULT Abort();

Stops previewing.

See Also ISnappy::Abort, ISnappyAdviseSync::Abort, ISnappyProcess::Abort

ISnappyPreview2::Alloc24BitPreviewDIB
HRESULT Alloc24BitPreviewDIB([out] HGLOBAL* phPackedDIB);

phPackedDIB Handle pointer to packed device-independent bitmap.

Allocates a packed DIB that can be used for color previewing. Note that a color
preview DIB does not have square pixels like most people assume. If you render
it assuming square pixels, the image will look very squished. You need to render
it into a rectangle with a 4:3 aspect ratio.

See Also AllocPreviewDIB, FreePreviewDIB, SetPreviewDIB

ISnappyPreview2::AllocPreviewDIB
HRESULT AllocPreviewDIB([out] HGLOBAL* phPackedDIB);

phPackedDIB Handle pointer to packed device-independent bitmap.

Allocates a packed DIB that can be used for black and white previewing.

See Also Alloc24BitPreviewDIB, FreePreviewDIB, SetPreviewDIB

ISnappyPreview2::FreePreviewDIB
HRESULT FreePreviewDIB([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to packed device-independent bitmap.

Frees a packed DIB allocated with Alloc24BitPreviewDIB or AllocPreviewDIB.

See Also Alloc24BitPreviewDIB, AllocPreviewDIB, SetPreviewDIB

46

ISnappyPreview2::SetAdvise
HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

pNotify Pointer to the interface to call for notification.
Sets an AdviseSync interface to be used to notify when an image is available,
and/or errors.

See Also ISnappySetAdvise, ISnappyAdviseSync::OnPreviewImageReady,
ISnappy::SetAdvise, ISnappyHardware::SetAdvise, ISnappyProcess::SetAdvise

ISnappyPreview2::SetPreviewDIB
HRESULT SetPreviewDIB([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to packed device-independent bitmap.

Assigns the DIB used by preview. If the DIB was allocated with
Alloc24BitPreviewDIB the preview will be in color and if it was allocated with
AllocPreviewDIB the preview will be in black and white.

See Also Alloc24BitPreviewDIB, AllocPreviewDIB, FreePreviewDIB

ISnappyPreview2::StartPreviewing
HRESULT StartPreviewing();

Begin previewing.

Note SetAdvise must have been called, so you can be notified when images are
available.

See Also Abort

ISnappyPreview2::UnlockPreviewImage
HRESULT UnlockPreviewImage();

Allows Preview to continue previewing.

Note Call this from an implementation of OnPreviewImageReady.

47

Interface ISnappyProcess
This is the interface for processing Snappy data. An ordinary application would
use ISnappyProcess to load and save captured Snappy data for processing such
as: color, brightness, and contrast.

ISnappyProcess is quite versatile--application programs might use
ISnappyProcess functions to examine and/or modify sequences of captured
images on the fly.

Function Members

Notification
SetAdvise Sets an AdviseSync interface to notify when an image is

available, and/or errors.
Loading and Saving
Snappy Data
GetSnappyData Returns a copy of the current unprocessed data to memory.
UseSnappyData Loads Snappy data from memory for processing to image.
SaveSnappyData Saves the unprocessed Snappy data to a file.
LoadSnappyData Load unprocessed Snappy data from a file.
Process Settings
SaveCurrentProcessSettingsAsDefault

Sets the current process settings (tint, sharpness, image
size, etc.) as the default.

GetDefaultProcessSettings
Get the default process settings (tint, sharpness, image size,
etc.) from the system registry.

Process Snappy Data
ProcessSnappyData Process the Snappy data and produce a DIB.
ProcessSnappyDataLine

Process one line of Snappy data.
Abort Abort processing Snappy data.
CanProcess Checks to see if Snappy data may be processed with the

current settings.
DIB
AllocProcessDIB Allocates a packed DIB based on the current process width,

height & bit depth (currently only 24-bit depth). This DIB
can be used with SetProcessDIB.

FreeProcessDIB Frees a packed DIB allocated with AllocProcessDIB.
SetProcessDIB Assigns the DIB to process into.

48

Speed
SetProcessSpeed Sets speed and quality of process step.
Image Size and Cropping
GetImageSize Get the final size of the next image to be processed.
SetImageSize Set the final size of the next image to be processed.
GetSourceCropping Get the rectangle (in field coordinates) of the source video

to be used when processing.
SetSourceCropping Set the rectangle (in field coordinates) of the source video

to use when processing.
GetMaxCropSize Get the usable video field size.
Image Settings (Setting Range -50 to 50)
GetTint Get the tint value to be used on next process.
SetTint Set the tint value to use for next process.
GetRed Get the Red value to be used on next process.
SetRed Set the Red value to use for next process.
GetGreen Get the Green value to be used on next process.
SetGreen Set the Green value to use for next process.
GetBlue Get the Blue value to be used on next process.
SetBlue Set the Blue value to use for next process.
GetSaturation Gets the amount of saturation (color) to be used on next

process.
SetSaturation Set the Saturation value to use for next process.
GetBrightness Get the amount of brightness to be used on next process.
SetBrightness Set the brightness value to use for next process.
GetContrast Get the amount of contrast to be used on next process.
SetContrast Set the contrast value to use for next process.
GetGamma Get the amount of gamma (picture) to be used on next

process.
SetGamma Set the gamma value to use for next process.
GetSharpness Get the amount of sharpness to be used on next process.
SetSharpness Set the sharpness value to use for next process.

ISnappyProcess::Abort
HRESULT Abort();

Abort processing Snappy data.

See Also ISnappy::Abort, ISnappyAdviseSync::Abort, ISnappyPreview::Abort

ISnappyProcess::AllocProcessDIB
HRESULT AllocProcessDIB([out] HGLOBAL* phPackedDIB);

49

phPackedDIB Handle pointer to packed device-independent bitmap.

Allocates a packed DIB based on the current process width, height & bit depth.
This DIB can be used with SetProcessDIB.

See Also SetProcessDIB, FreeProcessDIB, ISnappyPreview::AllocPreviewDIB,
ISnappyPreview::FreePreviewDIB, ISnappyPreview::SetPreviewDIB

ISnappyProcess::CanProcess
HRESULT CanProcess([out] BOOL* pbProcessAllowed);

pbProcessAllowed Set to TRUE if process can occur. Determines if Snappy
data can be processed with the current settings.

Here is an example of a See Also reference that provides descending order of
importance with various scope references, which might occur in the discussion of
the object ISnappyPreview, for the member ISnappyPreview::SetAdvise:.

See Also ISnappySetAdvise, ISnappyAdviseSync::OnPreviewImageReady,
ISnappy::SetAdvise, ISnappyHardware::SetAdvise, ISnappyProcess::SetAdvise

ISnappyProcess::FreeProcessDIB
HRESULT FreeProcessDIB([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to packed device-independent bitmap.

Frees a packed DIB allocated with AllocProcessDIB.

See Also AllocProcessDIB, SetProcessDIB, ISnappyPreview::AllocPreviewDIB,
ISnappyPreview::FreePreviewDIB, ISnappyPreview::SetPreviewDIB

ISnappyProcess::GetBlue
HRESULT GetBlue([out] long* pnBlue);

pnBlue Pointer to long to use for blue.

Get the blue value to be used on next process.

See Also SetBlue

50

ISnappyProcess::GetBrightness
HRESULT GetBrightness([out] long* pnBrightness);

pnBrightness Pointer to long to use for brightness.

Get the amount of brightness to be used on next process.

See Also SetBrightness

ISnappyProcess::GetContrast
HRESULT GetContrast([out] long* pnContrast);

pnContrast Pointer to long to use for contrast.

Get the amount of contrast to be used on next process.

See Also SetContrast

ISnappyProcess::GetDefaultProcessSettings
HRESULT GetDefaultProcessSettings();

Get the default process settings (tint, sharpness, image size, etc.) from the system
registry.

See Also SaveCurrentProcessSettingsAsDefault

ISnappyProcess::GetGamma
HRESULT GetGamma([out] long* pnGamma);

pnGamma Pointer to long to use for gamma.

Get the amount of gamma (picture) to be used on next process.

See Also SetGamma, Snappy User’s Manual, Picture Adjust

ISnappyProcess::GetGreen
HRESULT GetGreen([out] long* pnGreen);

51

pnGreen Pointer to long to use for green.

Get the green value to be used on next process.

See Also SetGreen

ISnappyProcess::GetImageSize
HRESULT GetImageSize([out] WORD* pnWidth,

 [out] WORD* pnHeight,
 [out] WORD* pnBitDepth);

pnWidth Pointer to word to use for pixel width.
pnHeight Pointer to word to use for pixel height.
pnBitDepth Pointer to word to use for pixel depth (i.e. 24 for true color).

Currently only supports 24-bit depth.

Get the final size of the next image to be processed.

See Also SetImageSize, GetSourceCropping, GetMaxCropSize

ISnappyProcess::GetMaxCropSize
HRESULT GetMaxCropSize([out] WORD* pnWidth,

[out] WORD* pnHeight);

pnWidth Pointer to word to use for width.
pnHeight Pointer to word to use for height.

Get the usable video field size.

See Also GetSourceCropping, SetSourceCropping, GetImageSize

ISnappyProcess::GetRed
HRESULT GetRed([out] long* pnRed);

pnRed Pointer to long to use for red.

Get the red value to be used on next process.
See Also SetRed

52

ISnappyProcess::GetSaturation
HRESULT GetSaturation([out] long* pnSaturation);

pnSaturation Pointer to long to use for saturation.

Gets the amount of saturation (color) to be used on next process.

See Also SetSaturation

ISnappyProcess::GetSharpness
HRESULT GetSharpness([out] long* pnSharpness);

pnSharpness Pointer to long to use for sharpness.

Get the amount of sharpness to be used on next process.

See Also SetSharpness

ISnappyProcess::GetSnappyData
HRESULT GetSnappyData([in] [out] BYTE** ppData);

ppData Pointer to a BYTE* pointer to be set to point to the data.

Returns a copy of the current unprocessed data.

See Also ISnappyAdviseSync::OnDataReady, ISnappy::SnapToUnprocessedData,
UseSnappyData, SaveSnappyData, LoadSnappyData

ISnappyProcess::GetSourceCropping
HRESULT GetSourceCropping([out] WORD* pnLeft,

 [out] WORD* pnTop,
 [out] WORD* pnRight,
 [out] WORD* pnBottom);

pnLeft Pointer to word to use for left.
pnTop Pointer to word to use for top.
pnRight Pointer to word to use for right.
pnBottom Pointer to word to use for bottom.

53

Get the offsets from the maximum field size (in field coordinates) of the source
video to be used when processing.

See Also SetSourceCropping, GetMaxCropSize

ISnappyProcess::GetTint
HRESULT GetTint([out] long* pnTint);

pnTint Pointer to long to use for tint.

Get the tint value to be used on next process.

See Also SetTint

ISnappyProcess::LoadSnappyData
HRESULT LoadSnappyData([in] LPCTSTR pFileName);

pFileName Pointer to name of file to load.

Load unprocessed Snappy data from a file.

See Also UseSnappyData, GetSnappyData, SaveSnappyData

ISnappyProcess::ProcessSnappyData
HRESULT ProcessSnappyData();

ProcessSnappyData immediately returns control to the caller and begins
processing video data. When the process finishes, the caller is notified.

Note SetAdvise must have been called, so you can be notified when images are
available through ISnappyAdviseSync::OnDataReady.

ISnappyAdviseSync::OnLineProcessed will notify after each line is processed.

See Also SetAdvise, ISnappyAdviseSync::OnDataReady,
ISnappyAdviseSync::OnLineProcessed, ProcessSnappyDataLine,
SetProcessSpeed, AllocProcessDIB, FreeProcessDIB, SetProcessDIB

54

ISnappyProcess::ProcessSnappyDataLine
HRESULT ProcessSnappyDataLine([in] WORD nLine, [in] BYTE* pBits);

pBits Pointer to line data to be filled out.
nLine The image line to be processed.

Immediately process one line of Snappy data, and then return to the caller.

Note This routine processes only one line. To process an entire image, use
ProcessSnappyData instead.

See Also ProcessSnappyData, SetProcessSpeed, AllocProcessDIB, FreeProcessDIB,
SetProcessDIB

ISnappyProcess::SaveCurrentProcessSettingsAsDefault
HRESULT SaveCurrentProcessSettingsAsDefault();

Sets the current process settings (tint, sharpness, image size, etc.) as the default.

See Also GetDefaultProcessSettings

ISnappyProcess::SaveSnappyData
HRESULT SaveSnappyData([in] LPCTSTR pFileName);

pFileName Pointer to name of file to create.

Saves the unprocessed Snappy data.

See Also LoadSnappyData, GetSnappyData, UseSnappyData

ISnappyProcess::SetAdvise
HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

pNotify Pointer to the interface to call for notification.

Sets an AdviseSync interface to be used to notify when an image is available,
and/or errors.

See Also ISnappyAdviseSync, ISnappy::SetAdvise, ISnappyPreview::SetAdvise,
ISnappyHardware::SetAdvise

55

ISnappyProcess::SetBlue
HRESULT SetBlue([in] long nBlue);

nBlue The blue value.

Set the blue value to use for next process.

See Also GetBlue

ISnappyProcess::SetBrightness
HRESULT SetBrightness([in] long nBrightness);

nBrightness The brightness value.

Set the brightness value to use for next process.

See Also GetBrightness

ISnappyProcess::SetContrast
HRESULT SetContrast([in] long nContrast);

nContrast The contrast value.

Set the contrast value to use for next process.

See Also GetContrast

ISnappyProcess::SetGamma
HRESULT SetGamma([in] long nGamma);

nGamma The gamma value

Set the gamma value to use for next process.

See Also GetGamma

ISnappyProcess::SetGreen
HRESULT SetGreen([in] long nGreen);

56

nGreen The green value.

Set the green value to use for next process.

See Also GetGreen

ISnappyProcess::SetImageSize
HRESULT SetImageSize([in] WORD nWidth,

 [in] WORD nHeight,
 [in] WORD nBitDepth);

nWidth Pixel width.
nHeight Pixel height.
nBitDepth Pixel depth (i.e. 24 for true color). Currently only 24-bit depth is

supported.

Set the final size of the next image to be processed.

See Also GetImageSize

ISnappyProcess::SetProcessDIB
HRESULT SetProcessDIB([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to packed device-independent bitmap.

Assigns the DIB to process into.

See Also AllocProcessDIB, FreeProcessDIB

ISnappyProcess::SetProcessSpeed
HRESULT SetProcessSpeed([in] BOOL bSpeed);

bSpeed This parameter was originally defined as a boolean but it actually
recognizes three values. A value of 1 indicates fast but lower-
quality processing while 0 indicates normal processing and 2
indicates HiDefinition mode (very slow).

Sets speed and quality of process step. Fast uses a simpler algorithm for higher
speed, however, the image quality is reduced.

57

ISnappyProcess::SetRed
HRESULT SetRed([in] long nRed);

nRed The red value.

Set the red value to use for next process.

See Also GetRed

ISnappyProcess::SetSaturation
HRESULT SetSaturation([in] long nSaturation);

nSaturation The saturation value.

Set the saturation value to use for next process.

See Also GetSaturation

ISnappyProcess::SetSharpness
HRESULT SetSharpness([in] long nSharpness);

nSharpness The sharpness value.

Set the sharpness value to use for next process.

See Also GetSharpness

ISnappyProcess::SetSourceCropping
HRESULT SetSourceCropping([in] WORD nLeft,

 [in] WORD nTop,
 [in] WORD nRight,
 [in] WORD nBottom);

nLeft Left.
nTop Top.
nRight Right.
nBottom Bottom.

Get the offsets from the maximum field size (in field coordinates) of the source
video to be used when processing.

58

See Also GetSourceCropping, GetMaxCropSize

ISnappyProcess::SetTint
HRESULT SetTint([in] long nTint);

nTint The tint value.

Set the tint value to use for next process.

See Also GetTint

ISnappyProcess::UseSnappyData
HRESULT UseSnappyData([in] BYTE *pData);

pData Pointer to data loaded by this call.

Loads Snappy data for processing to image.

See Also GetSnappyData, SaveSnappyData, LoadSnappyData

